
Software Reliability and Quality Analyser with
Quality Metric Analysis Along With Software

Reliability Growth Model

Madhavi Mane1, Manjusha Joshi2, Prof. Amol Kadam3, Prof. Dr. S.D. Joshi4
1,2,3,4Computer Engineering Department,

Bharati Vidyapeeth Deemed University College of Engineering
Pune-43(India)

Abstract— Software reliability is an important aspect of
software quality. And achieving reliability is the need of
today’s global competition. Estimation and prediction are the
ways to analyze software reliability. Software reliability
growth model is used to estimate the reliability through
mathematical expression and it also used to interpret software
failures as a random process. This paper describes a novel
software reliability growth model based on non homogeneous
Poisson process with allowing for imperfect debugging.
Maintaining and improving quality of the software is a very
difficult task due to many factors like ambiguous requirement
specification, lack of required resources etc. Many reliability
growth models have been proposed until now according to
different context and hence there is no globally accepted
model. Software quality metric highlights the quality aspects
of product, process, and project. As there is proportional
relationship between quality and reliability, analyzing quality
metrics is also a way to estimate reliability. So, we analyze
quality metrics along with maintaining the defect database.

Keywords— software reliability growth model (SRGM),
quality metrics, non-homogeneous Poisson process, software
reliability.

I. INTRODUCTION

The software system is extensively used in all kinds of
applications such as banking system, telecommunications,
and control structure in nuclear power plant as well as
defence system. Also integrated electronic devices and
automobiles also make use of softwares. There are many
known cases of severe consequences of software failure. So,
in order to avoid such consequences we need to accomplish
more reliability.
Reliability of the software is defined as the probability that
software does not deviate from its intended behaviour for a
specified time interval[1]. Software should be reliable for
accomplishing the improved performance. Small defects
can be a reason for severe failure of the system so system
design should be reliable. Software reliability growth
models are statistical implementation of defect detection
data with mathematical equations[4]. Many software
reliability growth models have been proposed. Many
SRGM’s make use of previous failure record which is
composed during testing in order to predict the field
behaviour of the software with the assumption that testing
is performed in accordance with a given operational

profile[1]. Most SRGM were developed considering that
faults which are identified during testing phase are
eliminated rapidly without introducing new faults [2].
The software reliability growth model proposed by Goel-
Okumoto[3] presumes that the faults are eliminated quickly
after a failure is observed. But the practically fault
elimination mechanism takes a time because each observed
fault is reported, diagnosed, corrected, and then verified.
Goel-Okumoto’s research article also provides a way for
research on software reliability growth models based on
Non-Homogeneous Poisson Process (NHPP). The model
depicts the failure inspection phenomenon by using an
exponential curve. Software reliability growth models are
categorized into two different types[4]:
1. Concave
2. S-shaped
These two models encompass asymptotic behaviour i.e.
detection rate of defect reduces as the number of defects
enhances. Concave model presumes these assumptions:
1. The detection rate of defect is proportional to the total

number of defects in code.
2. As the defect is renovated, there is reduction of defects

in the code and therefore there is a reduction in defect
detection rate as the number of defects repaired or
identified increases.

 Fig.1 Concave model[4]

S-Shaped model has following assumption:
1. Initial testing is not as enough as later testing, so there is
ramp-up period during which the defect detection rate
increases.

Madhavi Mane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3803-3806

www.ijcsit.com 3803

Fig 2. S-Shaped models[4]

There are many software reliability growth models are
estimated to assess the problem of reliability measurement.
These models consider the previous failure record of
software and classify the nature of failure process as
follows [5]:
1. Times between failure models:

This model considers the time interval between failures.
This model observes the mean time interval between
failure and from that calculates approximately the
probable next failure time.

2. Failure count model:
This class of the model concentrates on total faults or
failure count in specified time interval instead of times
between failures. The failure counts are assumed to
follow a known stochastic process with a time
dependant discrete or continuous failure rate.

3. Fault seeding model:
The idea of this class of model is to induce or “seed” a
known number of faults or defects in a program which
are assumed to have an unknown number of primitive
faults.

4. Input domain based model:
The class of this model involves creating a set of test
cases from an input distribution which is presumed to
be representative of the operational usage of the
program.

In most of the models it is assumed that fault elimination
mechanism is based on perfect debugging i.e. fault
elimination process eliminates the fault completely and
does not introduce new fault. But practically there is no
debugging process which is ideal. Goel[5] introduced the
idea of imperfect debugging i.e fault elimination process
removes faults without certainty.
Software quality metrics enlighten quality factors or
aspects of the product, process, and project [6]. Process
metrics are the characteristics or assets of the product such
as size, design features, complexity. Process metrics
associated with improving software development and
maintenance quality. Project metrics associated with
project characteristics along with execution. Quality
metrics can also organize into the following two types [6]:
1. end product quality metrics
2. In-process quality metrics

This paper proposed Modified Non-Homogeneous Poisson
Process, a new software reliability growth model which is
based on imperfect debugging. We implement it alongside
with software quality metrics and also maintain the defect
database. And thus we attempt to achieve more reliability.

II. BACKGROUND AND MOTIVATION

Software quality is associated with reliability and
accomplishing 100% reliability is very complex due to
some factors like unambiguous requirement specification,
insufficient resources, and complexity. The main
inspiration of our project is to achieve more reliability of
software so as to maintain quality.

III. METHODOLOGY:MODIFIED NON HOMOGENEOUS

POISSON PROCESS(MNHPP)

The proposed methodology is based on imperfect
debugging i.e. detected fault cannot be removed completely
and may introduce new errors while recovering the existing
defects. We consider that a fault is exponentially
distributed over the system. So,
μ(t)= (M(t)+Fa) e-φt ………………………………….(1)

Where,
μ(t) is mean value function for reliability growth model and
it represents number of failures expected by time t as
estimated by the model.
Fa is the number of faults that are probably activated for
some inputs.
M(t) is the total number of faults experienced by system in
time t.

And Failure intensity λ(t) can be evaluated as follows:
λ(t)= Ne-φt (M(t)+Fa)…………………………………..(2)

Where,

N is the initial number of faults exists in software prior to

test

So, if we consider that system experience the mth failure at
time tm and (m-1)th failure at time tm-1 then hazard rate Z(tm)
is estimated as follows:
Z(tm)=[(M(t)+Fa)-Id(m-1)] λ(t)…………………........(3)
Where,
 Id is probability of imperfect debugging.
 Tc = Npf /
Nuc………………………………………….(4)
 Where,
 Tc = Test coverage,
 Npf = Potential faults sites count sensitized by the test,
 Nuc = Total potential faults sites under consideration,

IV. PROPOSED SYSTEM ARCHITECTURE

Fig. 3 shows the system architecture. This architecture has
the following components:
1. Input software:

We provide real software as input to the project which
is nothing but the whole project along with its coding
part.

2. Quality metric analyzer:

Madhavi Mane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3803-3806

www.ijcsit.com 3804

Quality metric focuses on quality aspects of software.
Quality metric analyzer estimates and analyzes
following different quality metrics:

a. Total line count
b. Total number of attributes
c. Number of classes
d. Weighted methods per class
e. Maximum path length from class to root node.

3. Defect database:
This component maintains the defect database like
defect tracking system. The defect database includes
the details of metrics that exceed than its threshold
value.

4. MNHPP Analysis and hazard rate graph generation:
This module evaluates reliability by using Modified
Non-Homogeneous Poisson Process and generates the

graph for both fault detection rate and test coverage
function.
Fig 4 shows the fault detection rate graph. Fig. 5 shows
the graph of the test coverage function.

5. Reliability count function
Reliability count function gives the “reliability count
value” which can use to identify the extent of
reliability. This value is calculated as follows:

 (N/4)K…………………………………………(5)
Where,
N is the total number of metrics that exceeds than
threshold value.
K is a constant value
K=7.5 because this system is unable to consider all
quality metrics and all reliability aspects.

Fig. 3. System architecture

Fig. 4 Defect detection rate

Fig. 5 Test coverage function

Software as an input

MNHPP Analysis and
hazard function graph

generation

Defect Database

Quality Metric analyser

Reliability count function

Madhavi Mane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3803-3806

www.ijcsit.com 3805

V. CONCLUSION

This paper presented the Modified Non Homogeneous
Poisson Process. This method is based on imperfect
debugging. We analyse the input software through MNHPP
and by using a quality metric analyser. Through our
implementation we definitely try to achieve more reliability
henceforth enhancing the quality of the software.

REFERENCES
[1] Mei-Hwa Chen, Michael R. Ly,W. Eric WongJ., “Effect of code

coverage on software reliability measurement”, IEEE
TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 2, JUNE
2001

[2] P. K. Kapur, H. Pham, Sameer Yadav, Sameer Anand, Kalpana
Yadav, “A Unified Approach fo Developing Software Reliability
Models in the Presence of Imperfect Debugging and Error
Generation ”, IEEE Transactions on reliability, vol 60, pp. 331-340,

March 2011.S.
[3] Amrit L Goel, Kazu Okumoto, “Time dependent error detection rate

model for software reliability and other performance measures”,
IEEE transactions on reliability, vol R-28, pp. 206-211, 1979.

[4] Alan Wood, “Software reliabilioty growth models”, Technical
report 96.1 September 1996.

[5] Amrit Goel, “Software reliability models:Assuptions, Limitations,
Applicability”, IEEE Transactions on reliability vol SE-11,
December 1985.

[6] Stephen H. Kan, “Metrics and models in software quality
engineering”, Addison-Wesley Professional publication.

Madhavi Mane et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3803-3806

www.ijcsit.com 3806

